O.P.Code: 23CS0519

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Regular Examinations December-2025 FRODUCTION TO QUANTUM TECHNOLOGIES AND APPLICATION

INTRODUCTION TO QUANTUM TECHNOLOGIES AND APPLIC	ATION	IS	
(Common to All) Time: 3 Hours PART-A	Max. N	larks	: 70
(Answer all the Questions $10 \times 2 = 20$ Marks)			
1 a State Heisenberg's Uncertainty Principle.	CO1	L2	2M
b What is meant by quantization of energy levels?	CO1	L1	2M
c Compare quantum coherence and decoherence.	CO2	L2	2M
d What is the role of spin in representing a qubit?	CO2	L1	2M
e Discuss one role of quantum software in managing hardware limitations.	CO3	L2	2M
f Define decoherence in the context of quantum systems.	CO3	L1	2M
g What is Quantum Key Distribution (QKD)?	CO4	L1	2M
h List any two differences between classical and quantum gates.	CO4	L2	2M
i What is the primary focus of Psi Quantum in the quantum industry?	CO5	L1	2M
j. Why is standardization a challenge for quantum technology adoption?	CO5	L2	2M
PART-B			
(Answer all Five Units $5 \times 10 = 50$ Marks)			
UNIT-I		54	
2 a Illustrate the strategic importance of quantum technologies in modern	CO1	L3	5M
science and defense.			
b Describe the concept of quantum states-and explain how measurement	CO1	L3	5M
affects the state.	8	8	
OR			2
3 Express the global efforts in quantum research: compare initiatives of	CO1	L3	10M
India, USA, EU, and China.			
UNIT-II			
4 How does randomness arise in quantum mechanics? Compare this with	CO2	L2	10M
determinism in classical systems.			
OR			
5 a Explain quantum decoherence with an example.	CO2	L2	5M
b Compare spin-based qubits with polarization-based qubits.	CO2	L3	5M
UNIT-III			
6 a Evaluate scalability issues in building large-scale quantum computers.	CO ₃	L3	5M
• • • • • • • • • • • • • • • • • • • •			

OF

a Why are quantum systems fragile? Discuss about the role of CO3 L2 51 decoherence? b Explain the effect of noise and control challenges in quantum systems. CO3 L2 UNIT-IV Analyze the challenges in quantum communication and computing, such CO4 L3 10 as decoherence, and propose theoretical solutions. a Illustrate the idea of the Quantum Internet and its potential for global CO4 L3 secure networking. b Describe the real-world importance of quantum technologies in CO4 L3 communication and computing. UNIT-V 10 a Discuss India's educational and research landscape in quantum CO5 L2 5 technology and its global positioning in the quantum race. 11 a Explain about quantum computing is applicable in healthcare and CO5 L2 5 medical. b Discuss about the current educational and research initiatives driving CO5 L2 quantum technology growth worldwide.